EFFECT OF NONSTEADY WALL TEMPERATURE ON
FORCED-CONVECTION FILM BOILING ON A
FLAT PLATE
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Heat transfer associated with film boiling in forced-convection boundary-layer flow over a
flat plate whose temperature is an arbitrary function of time is studied analytically using
boundary-layer theory. The governing equations are solved by a perturbation technique. The
effect on heat transfer of varying the fluid properties is discussed,

Film boiling in a forced-convection boundary-layer flow has been investigated by Cess and Sparrow
{1] and Ito and Nishikawa [2] for the case of pure convection. In [3] the authors analyze the effect of radia-
tion on film boiling in a similar flow. All these studies relate to steady-state conditions, In practice,
film boiling is often observed under nonsteady conditions usually associated with a change of surface tem-~
perature with time. An example is offered by the cooling of large ingots, over which a liquid flows, Here,
film boiling first develops as a consequence of the large temperature difference between the surface and
the medium. The surface temperature varies with time and, consequently, a nonsteady state exists. We
propose to employ boundary-layer theory to investigate the heat transfer associated with film boiling under
nonsteady forced-convection conditions,

Consider the laminar boundary layer on a flat plate (Fig. 1), whose surface temperature Ty is uni-
form at any instant of time; in this case, in order to obtain vaporization on the plate, Ty, must be higher
than the saturation temperature Tg,; of the fluid. It is assumed that a continuous film of vapor flows over
the plate. Here, boiling is nonsteady because the temperature of the plate Ty, depends on time. Our in-
terest in the nonsteady vapor-film flow is related to the determination of the heat transfer between the plate
and the medium,

For a forced nondissipative flow with constant properties the laws of conservation of mass, momen-
tum, and energy take the form
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The boundary conditions of the problem are written as follows: aty = 0 (surface of plate)

u=0, 42)
v=20, (4b)
T=T,(®; (4c)
at y = 6(x, t) (vapor—liquid phase interface)
u=U,, (59)
T = Tg. (5b)
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On the interface at y = §(x, t) the energy conservation condition
has the form

o o or
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The second boundary condition, u(é) = U (Eq. (5a)), has been
used in most investigations of heat transfer associated with film
Fig. 1. Physical model and coor- boiling. However, in [1-4] this assumption was not made and it

dinate system., was shown that for a fluid with c[(p,u)v/(;m)L]l/2 <0.01, u(d) is in
‘ fact very close to U, [4].
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Previous investigations of nonsteady film boiling under free convection conditions show that the film
responds rapidly to the variation of the boundary condition with time [4]. Consequently, the nonsteady so-
lution can be represented as a perturbation of the solution for the instantaneous steady state, Such a solu-
tion is most convenient when the heat transfer for a wall whose temperature depends on time is found with
sufficient accuracy from quasisteady-state solutions.

Difficulties are caused by the fact that the thickness of the film is not known in advance and can be

determined only as a result of solving the problem. Moreover, the thickness of the film varies along the
plate and with time.

We transform system (1)-(3). We satisfy continuity equation (1), going over to the stream function

PR NP @
oy ox
We introduce the new dimensionless coordinate
(T B S v ®
where
A (s B} =2 (x, By Ml 0), oony A (3, 2 )

Equation (8) defines 7 in such a way that the boundary conditions are given at n = 0 and n = 1, A {s the di-
mensionless thickness of the film given by

NRT)) =-;— I/QE? 8(x, 1) (10)

The variables{)\n(x, t)} are still arbitrary functions of x and .

We express the dimensionless stream function and temperature as follows

_ ip(x, Y, t) |
P e 00 = g A G 0D N

T(x, y, {)— Teue
Ty®—Tey (12)
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In Egs. (8), (11), and (12) we have made the following assumptions:
1) f and © are functions of 7 and {A, (x, t)} only;
2) A is a function of {An(x, t)} only.

In the new variables the velocity components u and v take the form

p U= 9 (13)
2 0
L ST g (e ) it (g X)) NV A P i E.@L@L
v=—-——-2—l/ xV A(f nan) V vUxx (f nﬁn)zoahn = VvU.x A D4 o or (14)
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Fig. 2. Comparative velocity profiles: a) cp(T,, — Tgat)
/hngr = 0.3927; Pr = 1.0; b) cp(Ty - Tsat)/hngr = 2.2404;
Pr = 1.0.

Using (7), (8), and (12)-(14), we represent Eqs (2) and (3) in the form
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In Eq. (16) the expression d(Ty, — Tsat)/dt represents the derivative of the wall temperature with respect to
time.

The equation of conservation of energy at the interface (Eq. (6)) can be written in the following form:

atn =1
tgcA A axn —{—Azf 12xAf 2 0A axn L 2xA E of % __%p (Ty —Tgy) 99 ) a7)
o ox

n=0 n=0

In order for Eqgs. (15)-(17) to contain only functions of 5 and {?\n(x, t)}, it is necessary that the variables x
and t be eliminated from the equations in explicit form. An analysis of Eqs. (15)-(17) shows that this is
the case if {An(x, t)} is determined from the relation

x )w L 4T, —Ta)
(Tw sat)

A'n (x’ t) = (ﬁ dtn+1

where Ty, is a continuously differentiable function of time t.

, (18)

From Egs. (15)-(17), using (18), we obtain

9 f # XY, o
T+ oy T o f2< Rt E(nwm e NS
n=0 n=0 a=0
J
A a’: e Eam oh) ’6 , (19)
n=0 n=~0
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Fig. 3. Comparative temperature profiles: a) ep(Tyw — Tgyay)
{)hfgpi‘ ; 0.3927; Pr = 1.0; b) cp(Ty — Tgqay)/hePr = 2.2404;
r = 1.0.
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The boundary conditions take the form: at n = 0 (surface of plate)
f=0, I o, 8=1; (22)
on
at 7 = 1 (phase interface) of
9 9, 9=0. (23)
on

Equations (19)-(23) consist of functions of n and {Ay} only. Consequently, our initial assumptions that f, ©,
and A are functions of n and {An} only were justified. However, as before, the equations are partial dif-
ferential equations. In order to reduce them to differential equations, we expand the functions f, ©, and

A in generalized Taylor's series in stationary functions
FOL 2 My oees Ay - ) =P (W) +F )y +AF )+ T MFpm+ ... + A Foe () 4 .1

O Ao Ay ooy A o) = H )+ DBy () + M0 () + -]+ (000 (1 + -+ Mhn () + .- ], (24)
A(}‘D’ }\.1, ce ey }\'TL' .- .) = F + [kvov+A‘1A1 + . '] + [h%Am) +' L + }voxlel '*}_ . ]
On substituting these expansions in Eqs. (19)-(23) and grouping the coefficients for Ay, M, Ay, ..., A, We

obtain an infinite series of perturbed equations. Below we present the zero-order equations and the first
two systems of first-order perturbed equations:
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Fig. 4. Coefficient of Ay in Eq. (36) (a) and of A, in Eq. (36)
(b); abscissas: (T, — Tgqt)/hgPr, ordinates: (ef')W/H‘;,
—Ay/T) (a) and (B{W/H\'N - A{/T) ().

zero order
P”,-‘l— 1"2PP”=0, Ipi‘ _l_I‘zHrP:O;
y
first system of first-order equations
Fy" 4 I*PFy— 2I*P'Fy— I*P'F, = — 4T APP",

% POy = — 3IF,H' — ATAPH' +AI%H;
T

second system of first-order equations
Fi" + I*PF{ — 4I*P'F{ —3[*P'F, = — 6IA,PP" — 4I'A,P" -+ A*F} ,

p‘t + I'*PO; = 419, — 5I*F,H' —6I'A _PH' — 4n[AH'.
T

(25)

(26)

(27)

In these equations the primes denote differentiation with respect to . The boundary conditions can now be

written in the form: atn =0
P=pP =0, FIZF;:O’
Fo=Fy=0, H=1, 0,=80, =0

atn=1
P'=2, Fy=F =0, H=8,=0,=0.

Equation (21) can be represented in the form of three equations: atn =1

rep— ilig‘.‘ET_TSﬁ_L) H,

hse Pr
—T.) ..
3r*F, +-4rap — — 2w =Tald o
n;, Pr
5IF, + 6IAP -2I'AGF, A 4TAy = cpUw Ty =Ty o .

h;Pr t

Equations (25) with the corresponding boundary conditions are the equations of the steady state.

(28)

(29)

(30)

(31)

(32)

The

problem thus formulated takes the form of the fundamental problem of film boiling, the nonsteady wall tem-
perature effects constituting a perturbation. The functions P, Fy, Fy, H, T, 6y, 0,, A, and A, are func-
tions of the two parameters cp(Ty — Tsat)hfg and Pr, The general solutions of the nonsteady problem can

be obtained with the aid of series (24).

In order to determine the heat transfer at the wall it is sufficient to analyze the temperature gradient

(8T/9y)w. From Fourier's law we have

oT
1=K (5,

(33)
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In the new variables Fourier's law takes the form

1/2 r » ’
q=_5(Tw_Tm)( U ) [Hw+x,,eo,,,+xle,w+... 1 (34
2 v X T +hAg+MA + ...
If we define the heat flow in a hypothetical instantaneous steady state as
Ty —Tad (U= \" H,

K ( sat ____) Ho |

2 VX r (35)
we obtain the following relation
0] A
L =141, {————} x{‘i"_—l} (36)
Gst H,, I‘+1Hw”l‘+

From Eq. (36) we easily see that (©g,/Hy — Ay/T) and (8{y/Hy, — A'/T), which henceforth will be regarded
as coefficients of A, and X, represent the first-order nonsteady wall-temperature effect for film hoiling
under forced-convection conditions, Consequently, the relation between these coefficients and the physical
parameters of the problem must be carefully investigated.

For the boundary conditions investigated analytic solutions of the differential equations cannot be
found in closed form. Accordingly, we solved them numerically on a SDS-3600 computer. The fourth-
order Runge—Kutta—Hill method, described in detail in [4], was employed.

Equations (25)~(27) were solved for Pr = 0.001; 0.01; 0.1; 1.0; and 10.0 and for I' varying from 0.2 t0 3.0.
For these values it was found that cp(Ty — Tsat)/hngr varies on the interval from 0.001 to 10.90.

The results are presented in Figs. 2-4. The universal constants needed to calculate the heat transfer
are presented in Table 1.

The universal velocity and temperature functions are shown in Fig. 2 and Fig. 3 for Pr = 1.0 and
cp(T — Tsat)/hf Pr = 0.3927 and 2.2404. It is clear from these figures that the values of the higher-
order terms Fy, F1, 0y, © increase with increase in cp(Tw - Tsat)/hfg. Consequently, the deviation of
the velocity and temperature from the steady-state values increases with increase in superheat.

The coefficients A; and 2, in Eq. (36) are presented in Fig. 4. It is clear from these figures that the
effect of the nonsteady surface temperature Ty, on heat transfer increases with increase in the Prandtl num-
ber. An increase in the Prandtl number causes either an increase in kinematic viscosity or a decrease in
thermal diffusivity or both together, As may be seen from Eq. (10), the greater v, the thicker the vapor
film. An increase in the thickness of the film and a decrease in thermal diffusivity delay the thermal re-
sponse of the film to a change in Ty. Consequently, the deviation of the nonsteady heat transfer from the
instantaneous value in the steady state becomes greater as the Prandtl number increases.

It is clear from Fig. 4 that (0{y/Hy, — Ay/T) is a positive quantity, whereas (©1w/Hy; ~ Ay/T) is nega-
tive. Equation (18) shows that both A, and A, are positive when T{ and T are positive. From Eq. (36) it
is clear that the first-order effect T}, should reduce the heat transfer as compared with the steady-state
value, whereas T}, should increase it.

The relation between the coefficients of A, and A; and the parameter cp(Ty ~ Tgat)/hfg Pr is also clear
from Fig, 4. For a given Prandtl number the coefficients of A, and }; increase with the increase in the
parameter cp(Ty — Tga¢)/htg Pr. For a given fluid, the higher ep(Ty — Tgat)/hfg Pr, the greater the su-
perheating (this is clear from the tabulated values of I'). Consequently, the delay of the thermal response
of the film to changes in Ty, becomes longer as cp(Tw — Tsat)/hfg Pr increases.

We will determine when the heat transfer through a watl whose temperature depends on time, can be
found with sufficient accuracy from the quasisteady solutions.

Case 1. Flat plate with (Ty — Tgat) = Mt™. For a flat plate whose temperature varies according to
a power law, thevaluesofA; and A are calculated from Eq. (18)

mx
Ap =
0T Ut

and

' _m(m—-l)( mt)i
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TABLE 1. Universal Constants

T.,~T n » ” ’ ’ ’

pr Cﬂ‘}%sfa_t) r Ao As POw FOw F!w Huu eOw elw'

fe

10,0 0,2352 |0,4 |0,2404| —0,2533 |2,0260{0,0587/0,0588| -~1,1368 | 13,0263 | — 1,4128
0,9119 |0,6 |0,6206| —0,8357 |2,0613/0,2170/0,1421] —1,2891] 6,6852 |— 5,4055
3,7030 (0,8 |1,0907| —1,7241 (2,11080,4788(0, 1743 —1,4864 | 11,9384 |—13,0759

1,0 0,0397 |0,2 10,0039 —0,0027 |2,0066|0,0005/0,0007| —1,0133} 0,0791 |— 0,0012
0,3927 (0,6 {0,0954| —0,0760 (2,0613|0,0333(0,0359| —1,0396| 0,7030 |— 0,0899
1,3376 |1,0 |0,3782| —0,3550 (2,1771(0,1933)0,1327| —1,0952| 1,9166 |— 0,6017
6,1068 1,6 {1,1529| —1,2491 |2,49380,7339/0,2197| —1,2478| 4,7826 |— 2,9109
10,3331 11,8 {1,4702| —1,6213 |2,6454(0,9649(0,2261| —1,3210| 6,02568 |— 4,1550

0,1 0, 1587 i0,4 10,0031} —0,0021 (2,0269/0,0007{0,0010| —{,0114 | 0,0317 |— 0,0002
0,6584 0,8 [0,0231} —0,0166 (2,11080,0101;0,0100! —1,0155| 0,1264 |— 0,0030
1,5775 (1,2 [0,0728] —0,0521 (2,2615(0,04120,0290; —1,0229 | 0,2834 |— 0,0149
3,0724 |1,6 |0,1624] —0,1116 |2,4938|0,1034|0,0540| —1,0349| 0,5015 |— 0,0452
5,4125 12,0 |0,3026] —0,1961 |2,8218|0,2025/0,0875| —1,0530| 0,7785 |— 0,1050

0,01 0,1581 |0,4 (0,0003] — 2,0269] — — |—1,0102¢ 0,0032 —
0,6490 |0,8 |0,0023| —0,0016 |2,1108/0,0010/0,0010{ —1,0106] 0,0127 —
1,5244 i1,2 10,0074} —-0,0051 |2,2615|0,0042/0,0031] —1,0113| 0,0285 |— 0,0002
2,8773 |1,6 |0,0169] —0,0106 [2,4938|0,0108/0,0060! —1,0{26| 0,0506 |— 0,0005
4,8357 12,0 |0,0324] —0,0181 [2,8218/0,0217/0,0103) —1,0144| 0,0790 |- 0,0012

0,001] 0,1581 0,4 | — — 2,0269] — — 1--1,0101] 0,0003
1,0315 |1,0 |0,0004| —0,0003 |2,1771{0,0002|0,0002| —1,0102| 0,0020 —
4,7824 12,00(0,0033| —0,0018 |2,8218|0,0022|0,0011] —1,0105{ 0,0079 —

' 1

Clearly, both A; and }; decrease with time and at very large times become negligibly small.

In order to determine the applicability of the quasisteady solutions to problems of nonsteady heat
transfer, it is necessary to investigate Ay, A; and their coefficients, We note from Fig. 4 that the maximum
values of the coefficients are approximately equal to 10.0 at Pr = 10.0. If, however, A, and Ay < 10.0, the
nonsteady effect becomes negligibly small. For example, for linear temperature variations with respect
to time (m = 1 and hence A; = 0) the deviations from the instantaneous steady-state value is less than 10%
for time values greater than x/0.01 Uy (i.e., at t > 100 x/Uwx).

Case 2. Flat plate with (Ty, — Tgat) = Me™t,  For an exponential variation of wall temperature with
time we have

mx

Ay = —,
Um

m2x?
M= —3
Una

Consequently, A, and A, are constant with respect to time, so that the deviation of the heat-transfer
rate from the instantaneous steady-state value is constant with respect to time, This deviation becomes
negligibly small if A; and A; are much less than 0.1, which occurs at m <« U,/10 x.

CONCLUSIONS

The effect of nonsteady wall temperature on the heat transfer associated with forced-convection film
boiling on a flat plate has been investigated using laminar boundary-layer theory. The case of a uniform
wall temperature depending arbitrarily on time is considered. The first-order deviation of the heat trans-
fer from the instantaneous steady-state value is obtained in the form of a series in the dimensionless vari-
ables and the parameters cp(Ty — Tgat)/htg and Pr.

On the basis of the results obtained it is possible to determine when the heat transfer for a time-de-

pendent wall temperature can be obtained with sufficient accuracy from the quasisteady solutions. An anal-
ysis shows that:

1) the deviation of the velocity and temperature values from the steady-state values increases with
increase in superheat;

2) the effect of the nonsteady wall temperature increases with increase in the Prandtl number;

3) for a given fluid the deviation of the heat-transfer rate from the instantaneous steady-state value
increases with increase in superheat;
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4) for an exponential time dependence of the wall temperature there is a constant deviation of the
heat-transfer rate from the instantaneous steady-state value at all time values. In this case the
heat-transfer rate may be considered quasisteady if m <« U, /10 x;

5) when the temperature varies with time according to a power law the heat-transfer rate may be re-
garded as quasisteady at all values t » mx/10 U.

NOTATION
Cp is the specific heat of the vapor at constant pressure;
f is the nonsteady dimensionless stream function;
F,and F, are the perturbed dimensionless stream functions;
g is the acceleration due to gravity;
H is the steady-state dimensionless temperature;
hig is the latent heat of vaporization;
K is thermal conductivity;
P is the steady-state dimensionless stream function;
Pr is the Prandtl number of the vapor;
q is the local heat transfer from the wall;
T is temperature;
t is time;
u is the velocity component in the x direection;
Uco is the free-stream velocity;
v is the velocity component in y direction;
X is a coordinate measuring the distance along the plate from the leading edge;
y is a coordinate measuring the distance normal to the plate;
T is the steady-state dimensionless film thickness;
A is the nonsteady dimensionless film thickness;
Ay and A are perturbed dimensionless film thicknesses;
0 is the nonsteady film thickness (dimensional);
i is a dimensionless similarity variable (Eq. (8));
N} is an infinite set of dimensionless variables (Eq. (18));
S is the nonsteady dimensionless temperature;
O, and 6, are perturbed dimensionless temperatures;
U is the absolute viscosity;
v is the kinematic viscosity;
p is density;
P is the stream function;

Subscripts

L
sat
v
w
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denotes liquid;

denotes saturation;
denotes vapor;
denotes wall.
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